3B SCIENTIFIC® PHYSICS

Relative Pressure Sensor FW, ±1000 hPa 1021533

Instruction sheet

07/21 SD/ GH

1. Safety instructions

• To avoid permanent damage to the internal semiconductor sensor, the maximum permitted relative pressure of 4000 hPa must never be exceeded.

Only suitable for use with non-corrosive gases such as air, helium or nitrogen.

- Do not exceed the maximum temperature of the measured medium of 100°C!
- Do not allow the sensor element to come into contact with water.

2. Description

Relative pressure sensor with a measurement range up to 1000 hPa, suitable for measuring the pressure on the piston of the transparent Stirling engine 1002594 (for a pV diagram).

For two-port measurement using the sensor, hose connections are provided for two inputs.

The sensor box is designed to be detected automatically by the CMA interfaces distributed by 3B.

3. Equipment supplied

- 1 Sensor box
- 1 Silicone hose, internal Ø 2mm, 1mm long
- 1 PVC hose, internal Ø 3.5mm, 1mm long

Additionally required:

1 Sensor cable 1021514

4. Technical data

Measurement range:	± 1000 hPa
Sensor type:	Semiconductor sensor
Accuracy:	±1%
Resolution:	±1hPa
Connections:	2 hose connections, 4.8 mm diameter

5. Instructions

- Cut the silicone hose into sections of the required length.
- Using the lengths of hose, make the pressure connections between the sensor box and the Stirling engine.
- Note the "positive" and "negative" labelling of the hose connections - connect the hoses correctly according to the effective direction of the pressure.
- During the experiment, check that no elastic expansion of the hose is occurring – this can cause the pressure reading to be lower than the correct value.

6. Example experiment

Recording a pV diagram for a G-model Stirling motor using WiLab and Coach 7

Required equipment:

1 Stirling Engine G	1002594
1 WiLab	1022284
1 Displacement Sensor FW	1021534
1 Relative Pressure Sensor FW ±1000 hPa	1021533
2 Sensor Cable	1021514
1 Sensor Holder for Stirling Engine G	1008500
1 DC Power Supply 0 – 20 V, 0 – 5 A @ 115 V	1003311
or	
1 DC Power Supply 0 – 20 V, 0 – 5 A @ 230 V	1003312
1 set of experiment leads	1002843
1 Coach 7 License	

Set up the experiment as in Fig. 1.

Wrap the thread around the displacement sensor's pulley as in Fig. 2.

Connect WiLab to the computer, start the Coach 7 software and load an activity suitable for the Stirling engine G.

Connect the Stirling engine's DC motor to the DC power supply and set an output voltage of 6 V so that the Stirling engine operates at medium speed.

Only allow the Stirling motor to operate at high-speed for short periods so as not to overstress the displacement sensor.

7. Disposal

- The packaging should be disposed of at local recycling points.
 - Should you need to dispose of the equipment itself, never throw it away in normal domestic waste. Local regulations for the disposal of electrical equipment will apply.

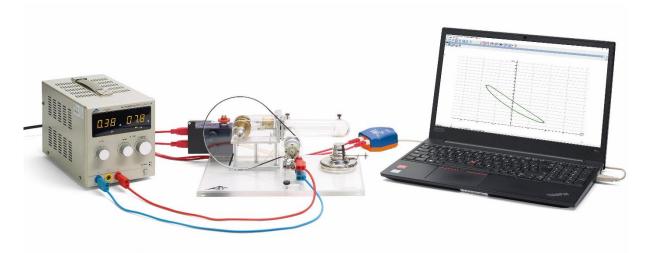


Fig. 1 Experiment set-up for recording the pV diagram of a G-model Stirling engine

Fig. 2 Attachment of the thread to displacement sensor pulley

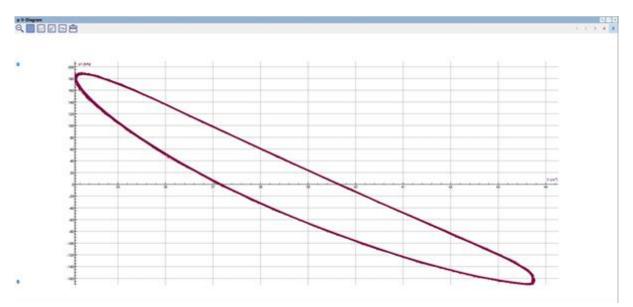


Fig. 3 Graph of pV diagram for Stirling engine G using WiLab and Coach 7.